Enhancement of polysialic acid expression improves function of embryonic stem-derived dopamine neuron grafts in Parkinsonian mice.
نویسندگان
چکیده
There has been considerable progress in obtaining engraftable embryonic stem (ES) cell-derived midbrain dopamine neurons for cell replacement therapy in models of Parkinson's disease; however, limited integration and striatal reinnervation of ES-derived grafts remain a major challenge for future clinical translation. In this paper, we show that enhanced expression of polysialic acid results in improved graft efficiency in correcting behavioral deficits in Parkinsonian mice. This result is accompanied by two potentially relevant cellular changes: greater survival of transplanted ES-derived dopamine neurons and robust sprouting of tyrosine hydroxylase-positive processes into host tissue. Because the procedures used to enhance polysialic acid are easily translated to other cell types and species, this approach may represent a general strategy to improve graft integration in cell-based therapies.
منابع مشابه
Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملEmbryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease.
Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES cell-derived dopamine neurons and subseq...
متن کاملIdentification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment.
Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell the...
متن کاملWnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice.
Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of D...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cells translational medicine
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2014